6533b821fe1ef96bd127b04a

RESEARCH PRODUCT

Contextuality Analysis of the Double Slit Experiment (With a Glimpse Into Three Slits)

Ehtibar N. DzhafarovJanne V. Kujala

subject

Rank (linear algebra)inconsistent connectednessGeneral Physics and AstronomyFOS: Physical scienceslcsh:Astrophysics01 natural sciencesArticledirect influencesProbability theoryRealizabilitylcsh:QB460-4660103 physical sciencesFOS: MathematicscontextualitykvanttimekaniikkaStatistical physicslcsh:Science010306 general physicskvanttiteoriadouble-slitMathematicsQuantum Physicstriple-slitta114010308 nuclear & particles physicsta111Probability (math.PR)Observablecontext-dependencelcsh:QC1-999Constraint (information theory)Double-slit experimentcontext-dependence; contextuality; direct influences; double-slit; inconsistent connectedness; signaling; triple-slitlcsh:QMarginal distributiontodennäköisyyssignalingQuantum Physics (quant-ph)81P13 81Q99 60A99Random variablelcsh:PhysicsMathematics - Probability

description

The Contextuality-by-Default theory is illustrated on contextuality analysis of the idealized double-slit experiment. The experiment is described by a system of contextually labeled binary random variables each of which answers the question: has the particle hit the detector, having passed through a given slit (left or right) in a given state (open or closed)? This system of random variables is a cyclic system of rank 4, formally the same as the system describing the EPR/Bell paradigm with signaling. Unlike the latter, however, the system describing the double-slit experiment is always noncontextual, i.e., the context-dependence in it is entirely explainable in terms of direct influences of contexts (closed-open arrangements of the slits) upon the marginal distributions of the random variables involved. The analysis presented is entirely within the framework of abstract classical probability theory (with contextually labeled random variables). The only physical constraint used in the analysis is that a particle cannot pass through a closed slit. The noncontextuality of the double-slit system does not generalize to systems describing experiments with more than two slits: in an abstract triple-slit system, almost any set of observable detection probabilities is compatible with both a contextual scenario and a noncontextual scenario of the particle passing though various combinations of open and closed slits (although the issue of physical realizability of these scenarios remains open).

https://dx.doi.org/10.48550/arxiv.1801.10593