6533b821fe1ef96bd127b8eb
RESEARCH PRODUCT
Anthranilamide-based 2-phenylcyclopropane-1-carboxamides, 1,1'-biphenyl-4-carboxamides and 1,1'-biphenyl-2-carboxamides: Synthesis biological evaluation and mechanism of action
Giuseppe DaidoneFabiana PlesciaAntonella D’anneoDemetrio RaffaBenedetta MaggioMaria Valeria RaimondiMarianna Lauricellasubject
0301 basic medicineG2 Phase2-Phenylcyclopropane-1-carboxamides 11’-biphenyl-4-carboxamides 11’-biphenyl-2-carboxamides G2/M arrest Phospho-ATM and gH2AX increaseDNA RepairDNA repairStereochemistryAntineoplastic AgentsApoptosisChloride03 medical and health scienceschemistry.chemical_compound0302 clinical medicineSettore BIO/10 - BiochimicaDrug DiscoverymedicineCytotoxic T cellHumansortho-AminobenzoatesMode of actionCell ProliferationPharmacologyChemistryOrganic ChemistryGeneral MedicineCell Cycle CheckpointsCell cycleSettore CHIM/08 - Chimica Farmaceutica030104 developmental biologyMechanism of actionApoptosis030220 oncology & carcinogenesismedicine.symptomK562 CellsDNAmedicine.drugDNA Damagedescription
Abstract Several anthranilamide-based 2-phenylcyclopropane-1-carboxamides 13a-f, 1,1’-biphenyl-4-carboxamides 14a-f and 1,1’-biphenyl-2-carboxamides 17a-f were obtained by a multistep procedure starting from the (1S,2S)-2-phenylcyclopropane-1-carbonyl chloride 11, the 1,1'-biphenyl-4-carbonyl chloride 12 or the 1,1'-biphenyl-2-carbonyl chloride 16 with the appropriate anthranilamide derivative 10a-f. Derivatives 13a-f, 14a-f and 17a-f showed antiproliferative activity against human leukemia K562 cells. Among these derivatives 13b, 14b and 17b exerted a particular cytotoxic effect on tumor cells. Derivative 17b showed a better antitumoral effect on K562 cells than 13b and 14b. Analyses performed to explore 17b mode of action revealed that it induced an arrest in G2/M phase of cell cycle which was consequent to DNA lesions as demonstrated by the increase in phospho-ATM and γH2AX, two known markers of DNA repair response system. The effect of 17b was also related to ROS generation, activation of JNK and induction of caspase-3 dependent apoptosis.
year | journal | country | edition | language |
---|---|---|---|---|
2017-05-01 |