6533b821fe1ef96bd127b9b5

RESEARCH PRODUCT

Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination

Johannes C. JansenAlessio FuocoElisa EspositoEmilio PardoMarcello MonteleoneDonatella ArmentanoRosaria BrunoJesús Ferrando-soria

subject

Materials scienceGeneral Computer ScienceResidual gas analyzerThermodynamics02 engineering and technology010402 general chemistryThermal diffusivity01 natural sciencesMethanelcsh:QA75.5-76.95Theoretical Computer Sciencechemistry.chemical_compoundGas separationSolubilitygas separationMOFOn-line mass spectrometryApplied Mathematicsmixed gas diffusiondiffusionPermeation021001 nanoscience & nanotechnology0104 chemical sciencesMembranechemistryTime lag methodtransport phenomenaModeling and Simulationmixed matrix membraneslcsh:Electronic computers. Computer science0210 nano-technologyTransport phenomena

description

The most widely used method to measure the transport properties of dense polymeric membranes is the time lag method in a constant volume/pressure increase instrument. Although simple and quick, this method provides only relatively superficial, averaged data of the permeability, diffusivity, and solubility of gas or vapor species in the membrane. The present manuscript discusses a more sophisticated computational method to determine the transport properties on the basis of a fit of the entire permeation curve, including the transient period. The traditional tangent method and the fitting procedure were compared for the transport of six light gases (H2, He, O2, N2, CH4, and CO2) and ethane and ethylene in mixed matrix membranes (MMM) based on Pebax&reg

10.3390/computation8020028https://www.mdpi.com/2079-3197/8/2/28