6533b821fe1ef96bd127c328

RESEARCH PRODUCT

A pointwise selection principle for metric semigroup valued functions

Caterina ManiscalcoVyacheslav V. Chistyakov

subject

PointwisePointwise convergenceDiscrete mathematicsSequenceSemigroupApplied MathematicsPointwise productInfimum and supremumPointwise convergenceSelection principleMetric semigroupJoint modulus of variationCombinatoricsSubsequenceCommutative propertyDouble sequenceAnalysisMathematics

description

Abstract Let ∅ ≠ T ⊂ R , ( X , d , + ) be an additive commutative semigroup with metric d satisfying d ( x + z , y + z ) = d ( x , y ) for all x , y , z ∈ X , and X T the set of all functions from T into X . If n ∈ N and f , g ∈ X T , we set ν ( n , f , g , T ) = sup ∑ i = 1 n d ( f ( t i ) + g ( s i ) , g ( t i ) + f ( s i ) ) , where the supremum is taken over all numbers s 1 , … , s n , t 1 , … , t n from T such that s 1 ⩽ t 1 ⩽ s 2 ⩽ t 2 ⩽ ⋯ ⩽ s n ⩽ t n . We prove the following pointwise selection theorem: If a sequence of functions { f j } j ∈ N ⊂ X T is such that the closure in X of the set { f j ( t ) } j ∈ N is compact for each t ∈ T , and lim n → ∞ ( 1 n lim N → ∞ sup j , k ⩾ N , j ≠ k ν ( n , f j , f k , T ) ) = 0 , then it contains a subsequence which converges pointwise on T . We show by examples that this result is sharp and present two of its variants.

10.1016/j.jmaa.2007.10.055http://dx.doi.org/10.1016/j.jmaa.2007.10.055