6533b821fe1ef96bd127c328
RESEARCH PRODUCT
A pointwise selection principle for metric semigroup valued functions
Caterina ManiscalcoVyacheslav V. Chistyakovsubject
PointwisePointwise convergenceDiscrete mathematicsSequenceSemigroupApplied MathematicsPointwise productInfimum and supremumPointwise convergenceSelection principleMetric semigroupJoint modulus of variationCombinatoricsSubsequenceCommutative propertyDouble sequenceAnalysisMathematicsdescription
Abstract Let ∅ ≠ T ⊂ R , ( X , d , + ) be an additive commutative semigroup with metric d satisfying d ( x + z , y + z ) = d ( x , y ) for all x , y , z ∈ X , and X T the set of all functions from T into X . If n ∈ N and f , g ∈ X T , we set ν ( n , f , g , T ) = sup ∑ i = 1 n d ( f ( t i ) + g ( s i ) , g ( t i ) + f ( s i ) ) , where the supremum is taken over all numbers s 1 , … , s n , t 1 , … , t n from T such that s 1 ⩽ t 1 ⩽ s 2 ⩽ t 2 ⩽ ⋯ ⩽ s n ⩽ t n . We prove the following pointwise selection theorem: If a sequence of functions { f j } j ∈ N ⊂ X T is such that the closure in X of the set { f j ( t ) } j ∈ N is compact for each t ∈ T , and lim n → ∞ ( 1 n lim N → ∞ sup j , k ⩾ N , j ≠ k ν ( n , f j , f k , T ) ) = 0 , then it contains a subsequence which converges pointwise on T . We show by examples that this result is sharp and present two of its variants.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2008-05-01 | Journal of Mathematical Analysis and Applications |