6533b822fe1ef96bd127cc10
RESEARCH PRODUCT
Internally Contracted Multireference Coupled Cluster Calculations with a Spin-Free Dirac-Coulomb Hamiltonian: Application to the Monoxides of Titanium, Zirconium, and Hafnium
Jürgen GaussAndreas KöhnFilippo LippariniTill Kirschsubject
Zirconium010304 chemical physicsElectronic correlationComputer Science Applications1707 Computer Vision and Pattern Recognition; Physical and Theoretical Chemistrychemistry.chemical_elementComputer Science Applications1707 Computer Vision and Pattern RecognitionElectronic structure010402 general chemistry01 natural sciences0104 chemical sciencesComputer Science ApplicationsHafniumsymbols.namesakeCoupled clusterchemistry0103 physical sciencessymbolsSinglet statePhysics::Chemical PhysicsAtomic physicsPhysical and Theoretical ChemistryRelativistic quantum chemistryHamiltonian (quantum mechanics)description
We combine internally contracted multireference coupled cluster theory with a four-component treatment of scalar-relativistic effects based on the spin-free Dirac–Coulomb Hamiltonian. This strategy allows for a rigorous treatment of static and dynamic correlation as well as scalar-relativistic effects, which makes it viable to describe molecules containing heavy transition elements. The use of a spin-free formalism limits the impact of the four-component treatment on the computational cost to the non-rate-determining steps of the calculations. We apply the newly developed method to the lowest singlet and triplet states of the monoxides of titanium, zirconium, and hafnium and show how the interplay between electronic correlation and relativistic effects explains the electronic structure of such molecules.
year | journal | country | edition | language |
---|---|---|---|---|
2017-06-14 |