Virtual Orbital Many-Body Expansions: A Possible Route towards the Full Configuration Interaction Limit
In the present letter, it is demonstrated how full configuration interaction (FCI) results in extended basis sets may be obtained to within sub-kJ/mol accuracy by decomposing the energy in terms of many-body expansions in the virtual orbitals of the molecular system at hand. This extension of the FCI application range lends itself to two unique features of the current approach, namely that the total energy calculation can be performed entirely within considerably reduced orbital subspaces and may be so by means of embarrassingly parallel programming. Facilitated by a rigorous and methodical screening protocol and further aided by expansion points different from the Hartree-Fock solution, al…
Vibrational Excitation Hindering an Ion-Molecule Reaction: The c−C3H2+−H2 Collision Complex
Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction $\mathrm{c}\text{\ensuremath{-}}{\mathrm{C}}_{3}{{\mathrm{H}}_{2}}^{+}+{\mathrm{H}}_{2}$, where excitation of the ion into the ${\ensuremath{\nu}}_{7}$ antisymmetric C-H stretching mode decreased the reaction rate coefficient toward the products $\mathrm{c}\text{\ensuremath{-}}{\mathrm{C}}_{3}{{\mathrm{H}}_{3}}^{+}+\mathrm{H}$. Supported by high-level quantum-chemical calculations, this observation is explained by th…
Internally Contracted Multireference Coupled Cluster Calculations with a Spin-Free Dirac-Coulomb Hamiltonian: Application to the Monoxides of Titanium, Zirconium, and Hafnium
We combine internally contracted multireference coupled cluster theory with a four-component treatment of scalar-relativistic effects based on the spin-free Dirac–Coulomb Hamiltonian. This strategy allows for a rigorous treatment of static and dynamic correlation as well as scalar-relativistic effects, which makes it viable to describe molecules containing heavy transition elements. The use of a spin-free formalism limits the impact of the four-component treatment on the computational cost to the non-rate-determining steps of the calculations. We apply the newly developed method to the lowest singlet and triplet states of the monoxides of titanium, zirconium, and hafnium and show how the in…
Gas-Phase Vibrational Spectroscopy of the Hydrocarbon Cations l-C3H+, HC3H+, and c-C3H2+: Structures, Isomers, and the Influence of Ne-Tagging
We report the first gas-phase vibrational spectra of the hydrocarbon ions C3H+ and C3H2+. The ions were produced by electron impact ionization of allene. Vibrational spectra of the mass-selected ions tagged with Ne were recorded using infrared predissociation spectroscopy in a cryogenic ion trap instrument using the intense and widely tunable radiation of a free electron laser. Comparison of high-level quantum chemical calculations and resonant depletion measurements revealed that the C3H+ ion is exclusively formed in its most stable linear isomeric form, whereas two isomers were observed for C3H2+. Bands of the energetically favored cyclic c-C3H2+ are in excellent agreement with calculated…
A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations
International audience; A fully polarizable implementation of the hybrid Quantum Mechanics/Molecular Mechanics approach is presented, where the classical environment is described through the AMOEBA polarizable force field. A variational formalism, offering a self-consistent 1 relaxation of both the MM induced dipoles and the QM electronic density is used for ground state energies and extended to electronic excitations in the framework of Time-Dependent Density Functional Theory combined with a state specific response of the classical part. An application to the calculation of the solvatochromism of the pyridinium N-phenolate betaine dye used to define the solvent ET30 scale is presented. Th…
Second-Order CASSCF Algorithm with the Cholesky Decomposition of the Two-Electron Integrals
In this contribution, we present the implementation of a second-order complete active space–self-consistent field (CASSCF) algorithm in conjunction with the Cholesky decomposition of the two-electron repulsion integrals. The algorithm, called norm-extended optimization, guarantees convergence of the optimization, but it involves the full Hessian and is therefore computationally expensive. Coupling the second-order procedure with the Cholesky decomposition leads to a significant reduction in the computational cost, reduced memory requirements, and an improved parallel performance. As a result, CASSCF calculations of larger molecular systems become possible as a routine task. The performance …
High-resolution rovibrational spectroscopy of c-C3H2+: The ν7 C–H antisymmetric stretching band
Abstract The ν 7 antisymmetric C–H stretching fundamental of c- C 3 H 2 + has been characterized in a cryogenic 22-pole ion trap by a novel type of action spectroscopy, in which the rovibrational excitation of c- C 3 H 2 + is detected as a slowing down of the low-temperature reaction c- C 3 H 2 + + H2 → C 3 H 3 + + H. Ninety-one rovibrational transitions with partly resolved fine structure doublets were measured in high resolution. Supported by high-level quantum chemical calculations, spectroscopic parameters were determined by fitting the observed lines with an effective Hamiltonian for an asymmetric rotor in a doublet electronic ground state, X ˜ A 1 2 , yielding a band origin at 3113.6…
Coupled-cluster techniques for computational chemistry: The CFOUR program package
An up-to-date overview of the CFOUR program system is given. After providing a brief outline of the evolution of the program since its inception in 1989, a comprehensive presentation is given of its well-known capabilities for high-level coupled-cluster theory and its application to molecular properties. Subsequent to this generally well-known background information, much of the remaining content focuses on lesser-known capabilities of CFOUR, most of which have become available to the public only recently or will become available in the near future. Each of these new features is illustrated by a representative example, with additional discussion targeted to educating users as to classes of …
Cost-Effective Treatment of Scalar Relativistic Effects for Multireference Systems: A CASSCF Implementation Based on the Spin-free Dirac-Coulomb Hamiltonian
We present an implementation of the complete active space-self-consistent field (CASSCF) method specifically designed to be used in four-component scalar relativistic calculations based on the spin-free Dirac-Coulomb (SFDC) Hamiltonian. Our implementation takes full advantage of the properties of the SFDC Hamiltonian that allow us to use real algebra and to exploit point-group and spin symmetry to their full extent while including in a rigorous way scalar relativistic effects in the treatment. The SFDC-CASSCF treatment is more expensive than its non-relativistic counterpart only in the orbital optimization step, while exhibiting the same computational cost for the rate-determining full conf…
A new discretization for the polarizable continuum model within the domain decomposition paradigm
International audience; We present a new algorithm to solve the polarizable continuum model equation in a framework compatible with the strategy previously developed by us for the conductor-like screening model based on Schwarz’s domain decomposition method (ddCOSMO). The new discretization is systematically improvable and is fully consistent with ddCOSMO so that it reproduces ddCOSMO results for large dielectric constants.
Perspective: Polarizable continuum models for quantum-mechanical descriptions
Polarizable continuum solvation models are nowadays the most popular approach to describe solvent effects in the context of quantum mechanical calculations. Unexpectedly, despite their widespread use in all branches of quantum chemistry and beyond, important aspects of both their theoretical formulation and numerical implementation are still not completely understood. In particular, in this perspective we focus on the numerical issues of their implementation when applied to large systems and on the theoretical framework needed to treat time dependent problems and excited states or to deal with electronic correlation. Possible extensions beyond a purely electrostatic model and generalization…
NMR chemical shift computations at second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals and Cholesky-decomposed two-electron integrals.
We report on a formulation and implementation of a scheme to compute NMR shieldings at second-order Moller-Plesset (MP2) perturbation theory using gauge-including atomic orbitals (GIAOs) to ensure gauge-origin independence and Cholesky decomposition (CD) to handle unperturbed as well as perturbed two-electron integrals. We investigate the accuracy of the CD for the derivatives of the two-electron integrals with respect to an external magnetic field as well as for the computed NMR shieldings, before we illustrate the applicability of our CD based GIAO-MP2 scheme in calculations involving up to about one hundred atoms and more than one thousand basis functions.
Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding
International audience; We present the implementation of a Born-Oppenheimer (BO) hybrid Quantum Mechan-ics/Molecular Mechanics (QM/MM) Molecular Dynamics (MD) strategy using Density Functional Theory (DFT) and the polarizable AMOEBA force field. This approach couples the Gaussian and Tinker suite of programs through a variational formalism allowing for a full self-consistent relaxation of both the AMOEBA induced dipoles and the DFT electronic density at each MD step. As the DFT SCF cycles are the limiting factor in terms of computational efforts and MD stability, we focus on the latter aspect and compare the Time-Reversible BO (TR– BO) and the Extended BO Lagrangian approaches (XL–BO) to th…
A black-box, general purpose quadratic self-consistent field code with and without Cholesky Decomposition of the two-electron integrals
We present the implementation of a quadratically convergent self-consistent field (QCSCF) algorithm based on an adaptive trust-radius optimisation scheme for restricted open-shell Hartree���Fock (ROHF), restricted Hartree���Fock (RHF), and unrestricted Hartree���Fock (UHF) references. The algorithm can exploit Cholesky decomposition (CD) of the two-electron integrals to allow calculations on larger systems. The most important feature of the QCSCF code lies in its black-box nature ��� probably the most important quality desired by a generic user. As shown for pilot applications, it does not require one to tune the self-consistent field (SCF) parameters (damping, Pulay's DIIS, and other simil…