6533b828fe1ef96bd12884ff

RESEARCH PRODUCT

A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations

Louis LagardèreBenedetta MennucciDaniele LocoFilippo LippariniÉTienne PolackStefano CapraseccaJean-philip PiquemalJean-philip PiquemalJean-philip Piquemal

subject

010304 chemical physicsChemistryPolarizable force fieldSolvatochromismQuantum Chemistry010402 general chemistryElementary chargeQM/MM01 natural sciences0104 chemical sciencesComputer Science Applications[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryQM/MMQM/MM; Polarisable embedding; Physical and Theoretical ChemistryPolarizabilityQuantum mechanics0103 physical sciencesPolarisable embeddingDensity functional theorypolarizable force field AMOEBAPhysical and Theoretical ChemistryGround stateExcitationElectronic density

description

International audience; A fully polarizable implementation of the hybrid Quantum Mechanics/Molecular Mechanics approach is presented, where the classical environment is described through the AMOEBA polarizable force field. A variational formalism, offering a self-consistent 1 relaxation of both the MM induced dipoles and the QM electronic density is used for ground state energies and extended to electronic excitations in the framework of Time-Dependent Density Functional Theory combined with a state specific response of the classical part. An application to the calculation of the solvatochromism of the pyridinium N-phenolate betaine dye used to define the solvent ET30 scale is presented. The results show that the QM/AMOEBA model not only properly describes specific and bulk effects in the ground state but it also correctly responds to the large change in the solute electronic charge distribution upon excitation.

https://doi.org/10.1021/acs.jctc.6b00385