6533b822fe1ef96bd127cce5

RESEARCH PRODUCT

Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre

Jacques RobertKlaus MølmerE. StourmS. Nic ChormaicR. GuéroutY. ZhangMaxence LepersMaxence LepersEtienne BrionEtienne Brion

subject

FOS: Physical sciences02 engineering and technologyoptical nanofibres01 natural sciencessymbols.namesake020210 optoelectronics & photonics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesAtomPrincipal quantum number0202 electrical engineering electronic engineering information engineeringSpontaneous emissionPhysics::Atomic Physics010306 general physicsPhysicsQuantum Physics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Spontaneous emission ratesRadiusCondensed Matter Physicsspontaneous emission ratesAtomic and Molecular Physics and OpticsSymmetry (physics)Optical nanobresRydberg atomRydberg formulasymbols[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsRydberg stateQuantum Physics (quant-ph)Rydberg atoms

description

International audience; We report on numerical calculations of the spontaneous emission rate of a Rydberg-excited sodium atom in the vicinity of an optical nanobre. In particular, we study how this rate varies with the distance of the atom to the bre, the bre's radius, the symmetry s or p of the Rydberg state as well as its principal quantum number. We nd that a fraction of the spontaneously emitted light can be captured and guided along the bre. This suggests that such a setup could be used for networking atomic ensembles, manipulated in a collective way due to the Rydberg blockade phenomenon.

10.1088/1361-6455/aafb95https://hal.archives-ouvertes.fr/hal-02116065