6533b822fe1ef96bd127cdb8

RESEARCH PRODUCT

Nonthermal effects of acceleration in the resonance interaction between two uniformly accelerated atoms

Salvatore SpagnoloRoberto PassanteWenting ZhouWenting ZhouJamir MarinoJamir MarinoAntonio NotoAntonio NotoLucia RizzutoMargherita Lattuca

subject

Electromagnetic fieldPhysicsQuantum Physics010308 nuclear & particles physicsVacuum stateFOS: Physical sciencesResonanceGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyUnruh effectExcited state0103 physical sciencesAtomic physicsQuantum Physics (quant-ph)010306 general physicsGround stateUnruh effect Resonance interactions Quantum field theory in curved space-timeScalar fieldQuantum fluctuation

description

We study the resonance interaction between two uniformly accelerated identical atoms, one excited and the other in the ground state, prepared in a correlated (symmetric or antisymmetric) state and interacting with the scalar field or the electromagnetic field in the vacuum state. In this case (resonance interaction), the interatomic interaction is a second-order effect in the atom-field coupling. We separate the contributions of vacuum fluctuations and radiation reaction to the resonance energy shift of the system, and show that only radiation reaction contributes, while Unruh thermal fluctuations do not affect the resonance interaction. We also find that beyond a characteristic length scale related to the atomic acceleration, non-thermal effects in the radiation reaction contribution change the distance-dependence of the resonance interaction. Finally, we find that previously unidentified features appear, compared with the scalar field case, when the interaction with the electromagnetic field is considered, as a consequence of the peculiar nature of the vacuum quantum noise of the electromagnetic field in a relativistically accelerated background.

https://doi.org/10.1103/physreva.94.012121