6533b822fe1ef96bd127cde6
RESEARCH PRODUCT
Proteins' Knotty Problems
Helen M. GinnPeter VirnauBenjamin TrefzAleksandra I. JarmolinskaRobert RunkelAgata P. PerlinskaJoanna I. Sulkowskasubject
Protein FoldingProtein ConformationComputational biologyMitochondrial Proteins03 medical and health sciences0302 clinical medicineKnot (unit)Protein structurestomatognathic systemStructural BiologyHumansDatabases ProteinMolecular BiologyMitochondrial protein030304 developmental biologyPhysics0303 health sciencesMembrane Proteinsfood and beveragescomputer.file_formatProtein Data BankMitochondriaDNA-Binding Proteinssurgical procedures operativeMembrane proteincomputer030217 neurology & neurosurgerydescription
Abstract Knots in proteins are increasingly being recognized as an important structural concept, and the folding of these peculiar structures still poses considerable challenges. From a functional point of view, most protein knots discovered so far are either enzymes or DNA-binding proteins. Our comprehensive topological analysis of the Protein Data Bank reveals several novel structures including knotted mitochondrial proteins and the most deeply embedded protein knot discovered so far. For the latter, we propose a novel folding pathway based on the idea that a loose knot forms at a terminus and slides to its native position. For the mitochondrial proteins, we discuss the folding problem from the perspective of transport and suggest that they fold inside the mitochondria. We also discuss the evolutionary origin of a novel class of knotted membrane proteins and argue that a novel knotted DNA-binding protein constitutes a new fold. Finally, we have also discovered a knot in an artificially designed protein structure.
year | journal | country | edition | language |
---|---|---|---|---|
2018-07-22 | Journal of Molecular Biology |