6533b822fe1ef96bd127ce03

RESEARCH PRODUCT

Online Computation of Abelian Runs

Arnaud LefebvreThierry LecroqGabriele FiciÉLise Prieur-gaston

subject

FOS: Computer and information sciencesFormal Languages and Automata Theory (cs.FL)Abelian run[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS][INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]Computer Science - Formal Languages and Automata Theory0102 computer and information sciences02 engineering and technology[INFO] Computer Science [cs]01 natural sciencesOnline computationTheoretical Computer ScienceCombinatoricsComputer Science - Data Structures and Algorithms0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)[INFO]Computer Science [cs]Abelian groupComputingMilieux_MISCELLANEOUSMathematicsCombinatorics on wordDiscrete mathematicsComputer Science (all)020206 networking & telecommunicationsAbelian periodText algorithm16. Peace & justiceSubstringCombinatorics on words010201 computation theory & mathematicsWord (group theory)Computer Science::Formal Languages and Automata Theory

description

Given a word $w$ and a Parikh vector $\mathcal{P}$, an abelian run of period $\mathcal{P}$ in $w$ is a maximal occurrence of a substring of $w$ having abelian period $\mathcal{P}$. We give an algorithm that finds all the abelian runs of period $\mathcal{P}$ in a word of length $n$ in time $O(n\times |\mathcal{P}|)$ and space $O(\sigma+|\mathcal{P}|)$.

https://hal.archives-ouvertes.fr/hal-01955960