6533b822fe1ef96bd127ce94
RESEARCH PRODUCT
Quarkonium suppression in heavy-ion collisions: an open quantum system approach
Nora BrambillaMiguel ÁNgel EscobedoJoan SotoAntonio Vairosubject
heavy ion: scatteringNuclear TheoryHigh Energy Physics::Latticequarkonium: productionhiukkasfysiikka01 natural sciences7. Clean energyHigh Energy Physics - ExperimentOpen quantum systemHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Bound stateEffective field theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]quark gluon: plasmaPhysicsLindblad equationquarkonium: suppressionopen quantum systemsQuarkoniumHigh Energy Physics - PhenomenologyQuantum electrodynamicsquarkoniummomentum: diffusion[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencesdissociationMomentum diffusionNuclear Theory (nucl-th)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum mechanics0103 physical sciencesplasma: expansionparticle physics010306 general physicsheavy quark: momentumta114010308 nuclear & particles physicsHigh Energy Physics::Phenomenologynuclear matter: effectrecombinationUpsilon(10020)evolution equation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasma[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentMultipole expansionUpsilon(9460)description
We address the evolution of heavy-quarkonium states in an expanding quark-gluon plasma by implementing effective field theory techniques in the framework of open quantum systems. In this setting we compute the nuclear modification factors for quarkonia that are $S$-wave Coulombic bound states in a strongly-coupled quark-gluon plasma. The calculation is performed at an accuracy that is leading-order in the heavy-quark density expansion and next-to-leading order in the multipole expansion. The quarkonium density-matrix evolution equations can be written in the Lindblad form, and, hence, they account for both dissociation and recombination. Thermal mass shifts, thermal widths and the Lindblad equation itself depend on only two non-perturbative parameters: the heavy-quark momentum diffusion coefficient and its dispersive counterpart. Finally, by numerically solving the Lindblad equation, we provide results for the $\Upsilon(1S)$ and $\Upsilon(2S)$ suppression.
year | journal | country | edition | language |
---|---|---|---|---|
2016-12-21 |