6533b822fe1ef96bd127d70b
RESEARCH PRODUCT
Hierarchy of solutions to the NLS equation and multi-rogue waves.
Pierre Gaillardsubject
NLS equationHistorywronskiansDegree (graph theory)Breatherrogue waves.Mathematical analysisPeregrine breathers[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]rogue waves33Q55 37K10 47.10A- 47.35.Fg 47.54.BdComputer Science ApplicationsEducationExponential functionsymbols.namesakeInteger[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Product (mathematics)symbols[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Rogue waveNonlinear Schrödinger equationQuotientMathematicsdescription
The solutions to the one dimensional focusing nonlinear Schrödinger equation (NLS) are given in terms of determinants. The orders of these determinants are arbitrarily equal to 2N for any nonnegative integer $N$ and generate a hierarchy of solutions which can be written as a product of an exponential depending on t by a quotient of two polynomials of degree N(N+1) in x and t. These solutions depend on 2N-2 parameters and can be seen as deformations with 2N-2 parameters of the Peregrine breather P_{N} : when all these parameters are equal to 0, we recover the P_{N} breather whose the maximum of the module is equal to 2N+1. Several conjectures about the structure of the solutions are given.
year | journal | country | edition | language |
---|---|---|---|---|
2014-07-06 |