6533b822fe1ef96bd127d754
RESEARCH PRODUCT
Tensor tomography in periodic slabs
Joonas IlmavirtaGunther Uhlmannsubject
Mathematics - Differential GeometryMathematics - Functional Analysis44A12 53A45röntgenkuvausDifferential Geometry (math.DG)tomografiaFOS: Mathematicsröntgentutkimustensor tomographyslab geometryX-ray tomographyinversio-ongelmatFunctional Analysis (math.FA)description
The X-ray transform on the periodic slab $[0,1]\times\mathbb T^n$, $n\geq0$, has a non-trivial kernel due to the symmetry of the manifold and presence of trapped geodesics. For tensor fields gauge freedom increases the kernel further, and the X-ray transform is not solenoidally injective unless $n=0$. We characterize the kernel of the geodesic X-ray transform for $L^2$-regular $m$-tensors for any $m\geq0$. The characterization extends to more general manifolds, twisted slabs, including the M\"obius strip as the simplest example.
year | journal | country | edition | language |
---|---|---|---|---|
2017-07-05 |