6533b823fe1ef96bd127df45

RESEARCH PRODUCT

A dual of 4-regular graph forG × C2n

Hamamache Kheddouci

subject

Discrete mathematicsStrongly regular graphAlgebra and Number TheoryApplied MathematicsDistance-regular graphCombinatoricsVertex-transitive graphEdge-transitive graphGraph powerRegular graphBound graphGraph toughnessAnalysisMathematics

description

Abstract A graph is said h-decomposable if its edge-set is decomposable into edge-disjoint hamiltonian cycles. Jha [3] conjectured that if G is a non-bipartite h-decomposable graph on even number of vertices, then G × K2 is h-decomposable. We use the notion of dual graph defined in [4], we prove that if G = Q1,2 ⊕ C3,4 is a 4-regular non-bipartite h-decomposable graph and the dual graphs relative to Q1,2 and C3,4 are connected then G × K 2 and G × C 2n are h-decomposable (where C 2n is an even cycle).

https://doi.org/10.1080/09720529.2003.10697965