6533b823fe1ef96bd127df46

RESEARCH PRODUCT

The Regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Problems

Lei JiaoOle-christoffer GranmoK. Darshana AbeyrathnaMorten Goodwin

subject

Normalization (statistics)Scheme (programming language)Computer scienceInferenceProbability density function02 engineering and technologyPropositional calculusRegression020202 computer hardware & architecturePattern recognition (psychology)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingNoise (video)Algorithmcomputercomputer.programming_language

description

The recently introduced Tsetlin Machine (TM) has provided competitive pattern classification accuracy in several benchmarks, composing patterns with easy-to-interpret conjunctive clauses in propositional logic. In this paper, we go beyond pattern classification by introducing a new type of TMs, namely, the Regression Tsetlin Machine (RTM). In all brevity, we modify the inner inference mechanism of the TM so that input patterns are transformed into a single continuous output, rather than to distinct categories. We achieve this by: (1) using the conjunctive clauses of the TM to capture arbitrarily complex patterns; (2) mapping these patterns to a continuous output through a novel voting and normalization mechanism; and (3) employing a feedback scheme that updates the TM clauses to minimize the regression error. The feedback scheme uses a new activation probability function that stabilizes the updating of clauses, while the overall system converges towards an accurate input-output mapping. The performance of the RTM is evaluated using six different artificial datasets with and without noise, in comparison with the Classic Tsetlin Machine (CTM) and the Multiclass Tsetlin Machine (MTM). Our empirical results indicate that the RTM obtains the best training and testing results for both noisy and noise-free datasets, with a smaller number of clauses. This, in turn, translates to higher regression accuracy, using significantly less computational resources.

https://doi.org/10.1007/978-3-030-30244-3_23