6533b823fe1ef96bd127e1bb
RESEARCH PRODUCT
The influence of pseudohalide ligands on the SIM behaviour of four-coordinate benzylimidazole-containing cobalt(ii) complexes.
Miguel JulveFrancesc LloretRafal KruszynskiBarbara MachuraBarbara MachuraLuminita Marilena TomaAnna SwitlickaJoan Canosubject
Materials science010405 organic chemistrychemistry.chemical_elementActivation energyAtmospheric temperature range010402 general chemistry01 natural sciencesMagnetic susceptibilitySpectral lineArrhenius plot0104 chemical scienceslaw.inventionInorganic ChemistryCrystallographychemistrylawMoleculeElectron paramagnetic resonanceCobaltdescription
Three, mononuclear complexes of the formula [Co(bmim)2(SCN)2] (1), [Co(bmim)2(NCO)2] (2) and [Co(bmim)2(N3)2] (3) [bmim = 1-benzyl-2-methylimidazole] were prepared and structurally analyzed by single-crystal X-ray crystallography. The cobalt(ii) ions in 1-3 are tetrahedrally coordinated with two bmim molecules and two pseudohalide anions. The angular distortion parameter δ was calculated and the SHAPE program (based on the CShM concept) was used for 1-3 to estimate the angular distortion from an ideal tetrahedron. The molecules of 1-3 are effectively separated, and the values of the shortest distance of cobalt-cobalt are 8.442(6) and 6.774(8) A for 1, 10.349(8) and 10.716(8) A for 2 and 6.778(1) and 9.232(1) A for 3. Direct current (dc) magnetic susceptibility measurements on the crushed crystals of 1-3 were carried out in the temperature range 1.9-295 K. The variable-temperature magnetic data of 1-3 mainly obey the zero-field splitting effect (D) of the 4A2 ground term of the tetrahedral cobalt(ii) complexes (2D being the energy gap between the |±1/2 and |±3/2 levels of the spin). The analysis of their magnetic data through the Hamiltonian H = D[S2z - S(S + 1)/3] + E(Sx2 - Sy2) + gβHS led to the following best-fit parameters: g = 2.29, D = -7.5 cm-1 and E/D = 0.106 (1), g = 2.28, D = + 6.3 cm-1 and E/D = 0.007 (2) and g = 2.36, D = + 6.7 cm-1 and E/D = 0.090 (3). The signs of D for 1-3 were confirmed by Q-band EPR spectra on powdered samples in the temperature range 4.0-20 K. Field-induced SIM behaviour was observed for 1-3 below 4.0 K, and the frequency-dependent maxima of χ''M were observed for 1 and only incipient signals of χ''M occurred for 2 and 3. The values of the exponential factor (τ0) and activation energy (Ea) for 1-3 which were obtained from the Arrhenius plot suggest a single relaxation process characteristic of an Orbach mechanism.
year | journal | country | edition | language |
---|---|---|---|---|
2018-04-13 | Dalton transactions (Cambridge, England : 2003) |