6533b823fe1ef96bd127e1f8

RESEARCH PRODUCT

Application of LSTM architectures for next frame forecasting in Sentinel-1 images time series

Waytehad MoskolaïWahabou AbdouAlbert DipandaDina Taiwe Kolyang

subject

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]FOS: Computer and information sciencesApprentissage profondComputer Science - Machine LearningImage and Video Processing (eess.IV)[INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]PrévisionComputer Science - Neural and Evolutionary ComputingDeep Learning AlgorithmsPrédiction[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]Electrical Engineering and Systems Science - Image and Video ProcessingLand cover change[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Machine Learning (cs.LG)SARIMA[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]FOS: Electrical engineering electronic engineering information engineeringSatellite imagesNeural and Evolutionary Computing (cs.NE)LSTMPredictionForecastingImages satellitaires

description

L'analyse prédictive permet d'estimer les tendances des évènements futurs. De nos jours, les algorithmes Deep Learning permettent de faire de bonnes prédictions. Cependant, pour chaque type de problème donné, il est nécessaire de choisir l'architecture optimale. Dans cet article, les modèles Stack-LSTM, CNN-LSTM et ConvLSTM sont appliqués à une série temporelle d'images radar sentinel-1, le but étant de prédire la prochaine occurrence dans une séquence. Les résultats expérimentaux évalués à l'aide des indicateurs de performance tels que le RMSE et le MAE, le temps de traitement et l'index de similarité SSIM, montrent que chacune des trois architectures peut produire de bons résultats en fonction des paramètres utilisés.

http://arxiv.org/abs/2009.00841