6533b823fe1ef96bd127e3ce

RESEARCH PRODUCT

Josephson Traveling Wave Parametric Amplifiers as Non-Classical Light Source for Microwave Quantum Illumination

Angelo GrecoLuca FasoloRosario Lo FrancoFabrizio IlluminatiDavid VitaliEmanuele EnricoPatrizia Livreri

subject

Vacuum stateMicrowave quantum illumination Josephson traveling wave parametric amplifiers Entangled quantum states Detection probability improvementFOS: Physical sciencesElectric apparatus and materials. Electric circuits. Electric networksSettore ING-INF/01 - ElettronicaIndustrial and Manufacturing EngineeringSettore FIS/03 - Fisica Della MateriaSuperconductivity (cond-mat.supr-con)OpticsJosephson traveling wave parametric amplifiersDetection probability improvement Entangled quantum states Josephson traveling wave parametric amplifiersMicrowave quantum illuminationQuantum metrologyMicrowave quantum illuminationElectrical and Electronic EngineeringTK452-454.4QuantumParametric statisticsPhysicsDetection probability improvementQuantum Physicsbusiness.industryAmplifierCondensed Matter - SuperconductivityBandwidth (signal processing)Entangled quantum statesElectronic Optical and Magnetic MaterialsMechanics of MaterialsQuantum illuminationbusinessQuantum Physics (quant-ph)Microwave

description

Abstract Detection of low-reflectivity objects can be enriched via the so-called quantum illumination procedure. In order that this quantum procedure outperforms classical detection protocols, entangled states of microwave radiation are initially required. In this paper, we discuss the role of Josephson Traveling Wave Parametric Amplifiers (JTWPAs), based on circuit-QED components, as suitable sources of a two-mode squeezed vacuum state, a special signal-idler entangled state. The obtained wide bandwidth makes the JTWPA an ideal candidate for generating quantum radiation in quantum metrology and information processing applications.

https://dx.doi.org/10.48550/arxiv.2106.00522