6533b823fe1ef96bd127ebb5
RESEARCH PRODUCT
Characterization of 233U alpha recoil sources for 229()Th beam production
Timo SajavaaraIain MooreIlkka Pohjalainensubject
Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsMaterials sciencePhysics::Instrumentation and Detectors010308 nuclear & particles physicsRadioactive sourceFOS: Physical sciencesThoriumchemistry.chemical_elementInstrumentation and Detectors (physics.ins-det)RadiationRutherford backscattering spectrometry01 natural sciencesIon sourceRecoilchemistry0103 physical sciencesGamma spectroscopyNuclear Experiment (nucl-ex)Atomic physicsNuclear Experiment010306 general physicsSpectroscopyNuclear ExperimentInstrumentationdescription
Radioactive $^{233}$U alpha recoil sources are being considered for the production of a thorium ion source to study the low-energy isomer in $^{229}$Th with high-resolution collinear laser spectroscopy at the IGISOL facility of the University of Jyv\"askyl\"a. In this work two different $^{233}$U sources have been characterized via alpha and gamma spectroscopy of the decay radiation obtained directly from the sources and from alpha-recoils embedded in implantation foils. These measurements revealed rather low $^{229}$Th recoil efficiencies of only a few percent. Although the low efficiency of one of the two sources can be attributed to its inherent thickness, the low recoil efficiency of the second, thinner source, was unexpected. Rutherford backscattering spectrometry (RBS) was performed to investigate the elemental composition as a function of depth revealing a contamination layer on top of the thin source. The combination of spectroscopic methods proves to be a useful approach in the assessment of alpha recoil source performance in general.
year | journal | country | edition | language |
---|---|---|---|---|
2019-03-25 | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms |