6533b823fe1ef96bd127ed08

RESEARCH PRODUCT

Effects of ocean acidification on embryonic respiration and development of a temperate wrasse living along a natural CO2gradient

Folco GiomiCarlo CattanoMarco Milazzo

subject

0106 biological sciencesPhysiological performance010504 meteorology & atmospheric sciencesPhysiologyOffspringEarly developmentManagement Monitoring Policy and LawBiology01 natural sciencesTemperate fishRespirationGlobal change0105 earth and related environmental sciencesNature and Landscape ConservationLarvaPhenotypic plasticitySymphodus ocellatusHatchingEcologySymphodus ocellatus010604 marine biology & hydrobiologyEcological ModelingOcean acidificationbiology.organism_classificationThemed Issue Article: Conservation Physiology of Marine FishesWrasseEarly development; Global change; Physiological performance; Symphodus ocellatus; Temperate fish; Nature and Landscape Conservation; Management Monitoring Policy and Law; Ecological Modeling; PhysiologySymphodus ocellatuResearch Article

description

We assessed rising CO2 effects on metabolism and development of a nesting wrasse by reciprocal transplant experiments in the field. Offspring brooded under different CO2 conditions exhibited similar responses. However, embryos from High-CO2 site were resilient to a wider range of pCO2 levels than those belonging to current-day conditions.

https://doi.org/10.1093/conphys/cov073