6533b823fe1ef96bd127f4ed

RESEARCH PRODUCT

Kurzweil-Henstock type integration on Banach spaces

Luisa Di Piazza

subject

Pure mathematicsIntegrable systemequiintegrabilityInfinite-dimensional vector functionMathematical analysisBanach spaceRiemann–Stieltjes integralType (model theory)Infinite-dimensional holomorphyKurzweil-Henstock integral28B0526A39Pettis integralGeometry and TopologyDaniell integralLp spaceAnalysisMathematics

description

In this paper properties of Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrals for vector-valued functions are studied. In particular, the absolute integrability for Kurzweil-Henstock integrable functions is characterized and a Kurzweil-Henstock version of the Vitali Theorem for Pettis integrable functions is given.

http://hdl.handle.net/10447/12367