6533b823fe1ef96bd127f4f6
RESEARCH PRODUCT
Non-autonomous rough semilinear PDEs and the multiplicative Sewing Lemma
Torstein NilssenAndris GerasimovicsAntoine Hocquetsubject
60H15 60H05 35K58 32A70Pure mathematicsLemma (mathematics)Rough pathSemigroupMultiplicative functionProbability (math.PR)Banach spacePropagatorParabolic partial differential equationFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Analysis of PDEsRough partial differential equationsProduct (mathematics)Multiplicative Sewing lemmaFOS: Mathematics/dk/atira/pure/subjectarea/asjc/2600/2603UniquenessRough pathMathematics - ProbabilityAnalysisMathematicsAnalysis of PDEs (math.AP)description
We investigate existence, uniqueness and regularity for local solutions of rough parabolic equations with subcritical noise of the form $du_t- L_tu_tdt= N(u_t)dt + \sum_{i = 1}^dF_i(u_t)d\mathbf X^i_t$ where $(L_t)_{t\in[0,T]}$ is a time-dependent family of unbounded operators acting on some scale of Banach spaces, while $\mathbf X\equiv(X,\mathbb X)$ is a two-step (non-necessarily geometric) rough path of H\"older regularity $\gamma >1/3.$ Besides dealing with non-autonomous evolution equations, our results also allow for unbounded operations in the noise term (up to some critical loss of regularity depending on that of the rough path $\mathbf X$). As a technical tool, we introduce a version of the multiplicative sewing lemma, which allows to construct the so-called product integrals in infinite dimensions. We later use it to construct a semigroup analogue for the non-autonomous linear PDEs as well as show how to deduce the semigroup version of the usual sewing lemma from it.
year | journal | country | edition | language |
---|---|---|---|---|
2021-11-01 |