6533b823fe1ef96bd127f51a

RESEARCH PRODUCT

Bioinspired catechol-terminated self-assembled monolayers with enhanced adhesion properties

Félix BusquéJosep SedóRosa Miralles-llumàSergio TatayJordi FaraudoMireia GuardingoDaniel Ruiz-molinaAlbert VerdaguerElena Bellido

subject

PolydopamineIndolesPolymersCatecholsBiocompatible MaterialsNanotechnologyMolecular Dynamics Simulationengineering.materialBiomimèticaMicroscopy Atomic ForceBiomaterialsMolecular dynamicschemistry.chemical_compound:Enginyeria química [Àrees temàtiques de la UPC]Coated Materials BiocompatibleCoatingMonolayerMoietyGeneral Materials ScienceMagnetite NanoparticlesAdhesive surfaceCatecholChemistrySAMsAdhesivenessSelf-assembled monolayerGeneral ChemistryAdhesionBiomimetic polymersChemical engineeringCatecholengineeringPrintingMagnetic nanoparticlesBiomimeticGoldBiotechnology

description

The role of the catechol moiety in the adhesive properties of mussel proteins and related synthetic materials has been extensively studied in the last years but still remains elusive. Here, a simplified model approach is presented based on a self-assembled monolayer (SAM) of upward-facing catechols thiol-bound to epitaxial gold substrates. The orientation of the catechol moieties is confirmed by spectroscopy, which also showed lack of significant amounts of interfering o-quinones. Local force-distance curves on the SAM measured by atomic force microscopy (AFM) shows an average adhesion force of 45 nN, stronger than that of a reference polydopamine coating, along with higher reproducibility and less statistical dispersion. This is attributed to the superior chemical and topographical homogeneity of the SAM coating. Catechol-terminated SAMs are also obtained on high-roughness gold substrates that show the ability to assemble magnetic nanoparticles, despite their lack of enhanced adhesion at the molecular level. Finally, the influence of the catechol group on the formation and quality of the SAM is explored both theoretically (molecular dynamics simulations) and experimentally using direct-write AFM lithography.

https://ddd.uab.cat/record/232128