6533b823fe1ef96bd127f6e5
RESEARCH PRODUCT
Magneto-elastic oscillations of neutron stars: exploring different magnetic field configurations
José A. FontPablo Cerdá-duránEwald MüllerMichael GablerNikolaos Stergioulassubject
High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsField lineAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)FOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsMagnetar01 natural sciencesAsteroseismologyGeneral Relativity and Quantum CosmologyMagnetic fieldDipoleNeutron starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamics010306 general physicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)description
We study magneto-elastic oscillations of highly magnetized neutron stars (magnetars) which have been proposed as an explanation for the quasi-periodic oscillations (QPOs) appearing in the decaying tail of the giant flares of soft gamma-ray repeaters (SGRs). We extend previous studies by investigating various magnetic field configurations, computing the Alfv��n spectrum in each case and performing magneto-elastic simulations for a selected number of models. By identifying the observed frequencies of 28 Hz (SGR 1900+14) and 30 Hz (SGR 1806-20) with the fundamental Alfv��n QPOs, we estimate the required surface magnetic field strength. For the magnetic field configurations investigated (dipole-like poloidal, mixed toroidal-poloidal with a dipole-like poloidal component and a toroidal field confined to the region of field lines closing inside the star, and for poloidal fields with an additional quadrupole-like component) the estimated dipole spin-down magnetic fields are between 8x10^14 G and 4x10^15 G, in broad agreement with spin-down estimates for the SGR sources producing giant flares. A number of these models exhibit a rich Alfv��n continuum revealing new turning points which can produce QPOs. This allows one to explain most of the observed QPO frequencies as associated with magneto-elastic QPOs. In particular, we construct a possible configuration with two turning points in the spectrum which can explain all observed QPOs of SGR 1900+14. Finally, we find that magnetic field configurations which are entirely confined in the crust (if the core is assumed to be a type I superconductor) are not favoured, due to difficulties in explaining the lowest observed QPO frequencies (f<30 Hz).
year | journal | country | edition | language |
---|---|---|---|---|
2012-08-31 |