6533b823fe1ef96bd127f75a

RESEARCH PRODUCT

Aging resistance of bio-epoxy jute-basalt hybrid composites as novel multilayer structures for cladding

Vincenzo FioreAntonino ValenzaD. BadagliaccoT. ScaliciGiuseppe AlaimoDaniele Enea

subject

Materials scienceScanning electron microscopeCharpy impact testSettore ICAR/11 - Produzione Edilizia02 engineering and technology010402 general chemistry01 natural sciencesDifferential scanning calorimetryFlexural strengthComposite materialCuring (chemistry)Impact behaviourCivil and Structural EngineeringPolymer-matrix compositeEpoxy021001 nanoscience & nanotechnologyCladding (fiber optics)Accelerated agingHybrid0104 chemical sciencesEnvironmental degradationSettore ING-IND/22 - Scienza E Tecnologia Dei Materialivisual_artembryonic structuresCeramics and Compositesvisual_art.visual_art_medium0210 nano-technology

description

Abstract Aging resistance of jute reinforced laminates is compared with two jute/basalt hybrid laminates prepared with different stacking sequences (i.e., sandwich and intercalated configuration). To this aim, composites are exposed to cyclic conditions comprising hygrothermal stress and UV radiation to promote an accelerated aging, for a period of 84 days. Specimens of each laminate are tested after 14, 28, 56 and 84 days, respectively. Quasi-static flexural tests, Charpy impact tests and dynamic mechanical tests are performed according to international ASTM and ISO standards. Furthermore, scanning electron microscopy and differential scanning calorimetry are used to evaluate the morphology of the laminates and the curing residual heat, respectively. Results showed that hybrid laminates exhibit higher impact energy and flexural properties than jute laminates, in addition to greater aging resistance. Moreover, hybrid laminates with sandwich-like configuration show improved aging tolerance in comparison to those with an intercalated configuration.

10.1016/j.compstruct.2016.11.025http://hdl.handle.net/10447/221508