6533b824fe1ef96bd127ffde

RESEARCH PRODUCT

Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level

Jaakko AkolaM. ManninenH. P. Heiskanen

subject

PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsGrapheneFermi levelPlane waveMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyElectronic structureEdge (geometry)law.inventionsymbols.namesakeComputer Science::Emerging TechnologiesZigzaglawQuantum dotMesoscale and Nanoscale Physics (cond-mat.mes-hall)symbolsElectronic band structure

description

The electronic shell structure of triangular, hexagonal and round graphene quantum dots (flakes) near the Fermi level has been studied using a tight-binding method. The results show that close to the Fermi level the shell structure of a triangular flake is that of free massless particles, and that triangles with an armchair edge show an additional sequence of levels ("ghost states"). These levels result from the graphene band structure and the plane wave solution of the wave equation, and they are absent for triangles with an zigzag edge. All zigzag triangles exhibit a prominent edge state at the Fermi level, and few low-energy conduction electron states occur both in triangular and hexagonal flakes due to symmetry reasons. Armchair triangles can be used as building blocks for other types of flakes that support the ghost states. Edge roughness has only a small effect on the level structure of the triangular flakes, but the effect is considerably enhanced in the other types of flakes. In round flakes, the states near the Fermi level depend strongly on the flake radius, and they are always localized on the zigzag parts of the edge.

https://doi.org/10.1088/1367-2630/10/10/103015