6533b824fe1ef96bd1280093

RESEARCH PRODUCT

Quasistationary solutions of scalar fields around collapsing self-interacting boson stars

Nicolas Sanchis-gualJosé A. FontAlejandro Escorihuela-tomàsJuan Carlos Degollado

subject

Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesMagnetospheric eternally collapsing objectGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationBlack holeNumerical relativityTheoretical physicsGeneral Relativity and Quantum CosmologyBinary black holeQuantum mechanics0103 physical sciencesGravitational collapseStellar black hole010303 astronomy & astrophysicsBoson

description

There is increasing numerical evidence that scalar fields can form long-lived quasibound states around black holes. Recent perturbative and numerical relativity calculations have provided further confirmation in a variety of physical systems, including both static and accreting black holes, and collapsing fermionic stars. In this work, we investigate this issue yet again in the context of gravitationally unstable boson stars leading to black-hole formation. We build a large sample of spherically symmetric initial models, both stable and unstable, incorporating a self-interaction potential with a quartic term. The three different outcomes of unstable models, namely, migration to the stable branch, total dispersion, and collapse to a black hole, are also present for self-interacting boson stars. Our simulations show that for black hole-forming models, a scalar-field remnant is found outside the black-hole horizon, oscillating at a different frequency than that of the original boson star. This result is in good agreement with recent spherically symmetric simulations of unstable Proca stars collapsing to black holes [N. Sanchis-Gual, C. Herdeiro, E. Radu, J. C. Degollado, and J. A. Font, Phys. Rev. D 95, 104028 (2017).PRVDAQ2470-001010.1103/PhysRevD.95.104028].

10.1103/physrevd.96.024015http://arxiv.org/abs/1704.08023