6533b824fe1ef96bd1280289

RESEARCH PRODUCT

MYC dosage compensation is mediated by miRNA-transcription factor interactions in aneuploid cancer

Yendry Oses-vargasFrancisco Siles-canalesJorge L. Arias-ariasGuillermo OviedoRodrigo Mora-rodriguezAndrés Segura-castilloDiana Bravo-estupiñanGloriana Vásquez-vargasJorge Torres-calvoMansai AcónPedro MendesBaez EdwinLuis A. Rojas-mateyJose Guevara-cotoCarsten GeißAnne Régnier-vigourouxSteve Quirós-barrantes

subject

Candidate geneMultidisciplinaryDosage compensationColorectal cancerBioinformaticsScienceQCancerMycBiologymedicine.diseaseArticleDownregulation and upregulationCancer cellmicroRNATranscription factorsmedicineCancer researchcancerDosage compensationaneuploidyMathematical biosciencesSystems biologyTranscription factormiRNA

description

Summary We hypothesize that dosage compensation of critical genes arises from systems-level properties for cancer cells to withstand the negative effects of aneuploidy. We identified several candidate genes in cancer multiomics data and developed a biocomputational platform to construct a mathematical model of their interaction network with micro-RNAs and transcription factors, where the property of dosage compensation emerged for MYC and was dependent on the kinetic parameters of its feedback interactions with three micro-RNAs. These circuits were experimentally validated using a genetic tug-of-war technique to overexpress an exogenous MYC, leading to overexpression of the three microRNAs involved and downregulation of endogenous MYC. In addition, MYC overexpression or inhibition of its compensating miRNAs led to dosage-dependent cytotoxicity in MYC-amplified colon cancer cells. Finally, we identified negative correlation of MYC dosage compensation with patient survival in TCGA breast cancer patients, highlighting the potential of this mechanism to prevent aneuploid cancer progression.

10.1016/j.isci.2021.103407http://europepmc.org/articles/PMC8627999