6533b824fe1ef96bd12808ff

RESEARCH PRODUCT

Nanostructures Cluster Models in Solution

Francisco TorrensGloria Castellano

subject

NanostructureMaterials scienceFullereneCluster (physics)NanotechnologyExtension (predicate logic)

description

The existence of Single-Wall C-Nanocones (SWNCs), especially nanohorns (SWNHs), and BC2N/Boron Nitride (BN) analogues in cluster form is discussed in solution in this chapter. Theories are developed based on models bundlet and droplet describing size-distribution function. The phenomena present unified explanation in bundlet in which free energy of (BC2N/BN-)SWNCs involved in cluster is combined from two parts: volume one proportional to the number of molecules n in cluster and surface one, to n1/2. Bundlet enables describing distribution function of (BC2N/BN-)SWNC clusters by size. From geometrical differences bundlet [(BC2N/BN-)SWNCs] and droplet (C60/B15C30N15/B30N30) predict dissimilar behaviours. Various disclination (BC2N/BN-)SWNCs are studied via energetic and structural analyses. Several (BC2N/BN-)SWNC's ends are studied that are different because of closing structure and arrangement type. Packing efficiencies and interaction-energy parameters of (BC2N/BN-)SWNCs/SWNHs are intermediate between C60/B15C30N15/B30N30 and (BC2N/BN-)Single-Wall C-Nanotube (SWNT) clusters: in-between behaviour is expected; however, properties of (BC2N/BN-)SWNCs, especially (BC2N/BN-)SWNHs, are calculated closer to (BC2N/BN-)SWNTs. Structural asymmetry in different (BC2N/BN-)SWNCs characterized by cone angle distinguishes properties of types: P2. BC2N/BN, especially species isoelectronic with C-analogues may be stable.

https://doi.org/10.4018/978-1-4666-6252-0.ch012