6533b824fe1ef96bd12809cd

RESEARCH PRODUCT

Effect of Composition on the Photoelectrochemical Behavior of Anodic Oxides on Binary Aluminum Alloys

Monica SantamariaPeter SkeldonF. Di QuartoG.e. Thompson

subject

PASSIVE FILMSMaterials scienceAlloyOxideTantalumchemistry.chemical_elementTungstenengineering.materialchemistry.chemical_compoundWO3Materials ChemistryElectrochemistryPHOTOEMISSION PROCESSESDEPOSITIONPhotocurrentSPECTROSCOPYRenewable Energy Sustainability and the EnvironmentAnodizingFILM FORMATIONMetallurgyIONIC TRANSPORTCORROSIONCondensed Matter PhysicsTA2O5Surfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryChemical engineeringengineeringPHOTOEMISSION PROCESSES; IONIC TRANSPORT; FILM FORMATION; PASSIVE FILMS; CORROSION; TA2O5; WO3; CRYSTALLIZATION; SPECTROSCOPY; DEPOSITIONCRYSTALLIZATIONTernary operationTitanium

description

The photoelectrochemical behavior of anodic films on Al alloys, containing titanium, tantalum, and tungsten (valve metals), has been studied as a function of alloy composition and anodizing conditions. Photocurrent spectroscopy has been used to get information on bandgap and the flatband potential values of different mixed oxides. Both insulator-like and semiconducting behavior has been observed for anodic oxides grown on Al-W and Al-Ti alloys dependent on alloy initial composition. Optical bandgap values, E opt g , of different oxides are in accordance with predictions based on the correlation between E opt g and the difference of electronegativities of the oxide constituents, indicating potential for tailoring solid state properties of ternary oxides.

https://doi.org/10.1149/1.2353809