6533b824fe1ef96bd1280a27

RESEARCH PRODUCT

SpaceScanner: COPASI wrapper for automated management of global stochastic optimization experiments

Atis ElstsEgils StalidzansAgris Pentjuss

subject

0301 basic medicineStatistics and ProbabilityComputer science0206 medical engineeringComputational Biology02 engineering and technologycomputer.software_genreModels BiologicalBiochemistryComputer Science ApplicationsSet (abstract data type)03 medical and health sciencesComputational Mathematics030104 developmental biologyComputational Theory and MathematicsStochastic optimizationData miningMolecular BiologycomputerSoftware020602 bioinformaticsCombinatorial explosion

description

Abstract Motivation Due to their universal applicability, global stochastic optimization methods are popular for designing improvements of biochemical networks. The drawbacks of global stochastic optimization methods are: (i) no guarantee of finding global optima, (ii) no clear optimization run termination criteria and (iii) no criteria to detect stagnation of an optimization run. The impact of these drawbacks can be partly compensated by manual work that becomes inefficient when the solution space is large due to combinatorial explosion of adjustable parameters or for other reasons. Results SpaceScanner uses parallel optimization runs for automatic termination of optimization tasks in case of consensus and consecutively applies a pre-defined set of global stochastic optimization methods in case of stagnation in the currently used method. Automatic scan of adjustable parameter combination subsets for best objective function values is possible with a summary file of ranked solutions. Availability and implementation https://github.com/atiselsts/spacescanner. Supplementary information Supplementary data are available at Bioinformatics online.

https://doi.org/10.1093/bioinformatics/btx363