0000000000266719

AUTHOR

Agris Pentjuss

0000-0001-7880-5130

showing 7 related works from this author

IMFLer: A Web Application for Interactive Metabolic Flux Analysis and Visualization.

2021

Increasing genome-wide data in biological sciences and medicine has contributed to the development of a variety of visualization tools. Several automatic, semiautomatic, and manual visualization tools have already been developed. Some even have integrated flux balance analysis (FBA), but in most cases, it depends on separately installed third party software that is proprietary and does not allow customization of its functionality and has many restrictions for easy data distribution and analysis. In this study, we present an interactive metabolic flux analyzer and visualizer (IMFLer)-a static single-page web application that enables the reading and management of metabolic model layout maps, …

Interface (Java)Computer sciencebusiness.industryComputational BiologyWeb BrowserFile formatModels BiologicalMetabolic Flux AnalysisFlux balance analysisVisualizationPersonalizationComputational MathematicsUser-Computer InterfaceSoftwareComputational Theory and MathematicsGraph drawingModeling and SimulationGeneticsWeb applicationbusinessSoftware engineeringMolecular BiologyAlgorithmsSoftwareJournal of computational biology : a journal of computational molecular cell biology
researchProduct

Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism.

2013

The active, yet energetically inefficient electron transport chain of the ethanologenic bacterium Zymomonas mobilis could be used in metabolic engineering for redox-balancing purposes during synthesis of certain products. Although several reconstructions of Z. mobilis metabolism have been published, important aspects of redox balance and aerobic catabolism have not previously been considered. Here, annotated genome sequences and metabolic reconstructions have been combined with existing biochemical evidence to yield a medium-scale model of Z. mobilis central metabolism in the form of COBRA Toolbox model files for flux balance analysis (FBA). The stoichiometric analysis presented here sugges…

Succinic AcidBioengineeringXyloseApplied Microbiology and BiotechnologyZymomonas mobilisMetabolic engineeringElectron Transportchemistry.chemical_compoundXylose metabolismZymomonasXylosebiologyBase SequenceEthanolMolecular Sequence AnnotationGeneral MedicineMetabolismbiology.organism_classificationElectron transport chainFlux balance analysisGlucosechemistryBiochemistryMetabolic EngineeringNAD+ kinaseGlycolysisGenome BacterialBiotechnologyJournal of biotechnology
researchProduct

SpaceScanner: COPASI wrapper for automated management of global stochastic optimization experiments

2017

Abstract Motivation Due to their universal applicability, global stochastic optimization methods are popular for designing improvements of biochemical networks. The drawbacks of global stochastic optimization methods are: (i) no guarantee of finding global optima, (ii) no clear optimization run termination criteria and (iii) no criteria to detect stagnation of an optimization run. The impact of these drawbacks can be partly compensated by manual work that becomes inefficient when the solution space is large due to combinatorial explosion of adjustable parameters or for other reasons. Results SpaceScanner uses parallel optimization runs for automatic termination of optimization tasks in case…

0301 basic medicineStatistics and ProbabilityComputer science0206 medical engineeringComputational Biology02 engineering and technologycomputer.software_genreModels BiologicalBiochemistryComputer Science ApplicationsSet (abstract data type)03 medical and health sciencesComputational Mathematics030104 developmental biologyComputational Theory and MathematicsStochastic optimizationData miningMolecular BiologycomputerSoftware020602 bioinformaticsCombinatorial explosionBioinformatics
researchProduct

Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies

2014

Mathematical modeling of metabolism is essential for rational metabolic engineering. The present work focuses on several types of modeling approach to quantitative understanding of central metabolic network and energetics in the bioethanol-producing bacterium Zymomonas mobilis. Combined use of Flux Balance, Elementary Flux Mode, and thermodynamic analysis of its central metabolism, together with dynamic modeling of the core catabolic pathways, can help to design novel substrate and product pathways by systematically analyzing the solution space for metabolic engineering, and yields insights into the function of metabolic network, hardly achievable without applying modeling tools.

Microbiology (medical)Entner–Doudoroff pathwayComputer scienceSystems biologyCombined uselcsh:QR1-502Metabolic networkMicrobiologyZymomonas mobilislcsh:MicrobiologyMetabolic engineeringstoichiometric modelingbiologybusiness.industryZymomonas mobilissystems biologyMetabolismelementary flux modeskinetic modelingbiology.organism_classificationBiotechnologycentral metabolismPerspective ArticleBiochemical engineeringmetabolic engineeringbusinessFlux (metabolism)Frontiers in Microbiology
researchProduct

Integrative Gene Expression and Metabolic Analysis Tool IgemRNA

2022

ABSTRACTGenome scale metabolic modelling is widely used technique to research metabolism impacts on organism’s properties. Additional omics data integration enables a more precise genotype-phenotype analysis for biotechnology, medicine and life sciences. Transcriptome data amounts rapidly increase each year. Many transcriptome analysis tools with integrated genome scale metabolic modelling are proposed. But these tools have own restrictions, compatibility issues and the necessity of previous experience and advanced user skills. We have analysed and classified published tools, summarized possible transcriptome pre-processing, and analysis methods and implemented them in the new transcriptome…

business.industryComputer scienceProcess (engineering)Metabolic networkData validationComputational biologyBiochemistryToolboxTranscriptomeSoftwaregenome-scale metabolic modeling; transcriptomics; software engineering; Cobra Toolbox 3.0; MATLAB; flux balance analysis; flux variability analysis; omics data analysisbusinessFlux (metabolism)Molecular BiologyGraphical user interfaceBiomolecules; Volume 12; Issue 4; Pages: 586
researchProduct

Improvement of acetaldehyde production in Zymomonas mobilis by engineering of Its aerobic metabolism

2019

Acetaldehyde is a valuable product of microbial biosynthesis, which can be used by the chemical industry as the entry point for production of various commodity chemicals. In ethanologenic microorganisms, like yeast or the bacterium Zymomonas mobilis, this compound is the immediate metabolic precursor of ethanol. In aerobic cultures of Z. mobilis, it accumulates as a volatile, inhibitory byproduct, due to the withdrawal of reducing equivalents from the alcohol dehydrogenase reaction by respiration. The active respiratory chain of Z. mobilis with its low energy-coupling efficiency is well-suited for regeneration of NAD+ under conditions when acetaldehyde, but not ethanol, is the desired catab…

Microbiology (medical)Cellular respirationlcsh:QR1-502Respiratory chainZymomonas mobilisMicrobiologylcsh:MicrobiologyMetabolic engineering03 medical and health scienceschemistry.chemical_compoundstoichiometric model030304 developmental biologyAlcohol dehydrogenaseOriginal Research2. Zero hunger0303 health sciencesEthanolbiology030306 microbiologyZymomonas mobilisNADH dehydrogenaseAcetaldehydebiology.organism_classificationmetabolomicschemistryBiochemistrybiology.proteinmetabolic engineeringacetaldehyde
researchProduct

Model-based biotechnological potential analysis of Kluyveromyces marxianus central metabolism

2016

Abstract The non-conventional yeast Kluyveromyces marxianus is an emerging industrial producer for many biotechnological processes. Here, we show the application of a biomass-linked stoichiometric model of central metabolism that is experimentally validated, and mass and charge balanced for assessing the carbon conversion efficiency of wild type and modified K. marxianus. Pairs of substrates (lactose, glucose, inulin, xylose) and products (ethanol, acetate, lactate, glycerol, ethyl acetate, succinate, glutamate, phenylethanol and phenylalanine) are examined by various modelling and optimisation methods. Our model reveals the organism’s potential for industrial application and metabolic engi…

GlycerolModels Molecular0301 basic medicinePhenylalanineSuccinic AcidEthyl acetateGlutamic AcidLactoseBioengineeringAcetatesXyloseApplied Microbiology and BiotechnologyMetabolic engineeringIndustrial MicrobiologyKluyveromyces03 medical and health scienceschemistry.chemical_compoundOxygen ConsumptionKluyveromyces marxianusGlycerolBiomassFood scienceXyloseEthanolbiologyInulinReproducibility of ResultsSubstrate (chemistry)Phenylethyl Alcoholbiology.organism_classificationYeastCulture MediaGlucose030104 developmental biologyMetabolic EngineeringchemistryBiochemistryYield (chemistry)CalibrationLactatesBiotechnologyJournal of Industrial Microbiology and Biotechnology
researchProduct