6533b824fe1ef96bd1280a35

RESEARCH PRODUCT

"Mariage des Maillages": A new numerical approach for 3D relativistic core collapse simulations

Harald DimmelmeierJerome NovakJose A. FontJose M. IbanezEwald Mueller

subject

Astrophysics (astro-ph)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsGeneral Relativity and Quantum Cosmology

description

We present a new 3D general relativistic hydrodynamics code for simulations of stellar core collapse to a neutron star, as well as pulsations and instabilities of rotating relativistic stars. It uses spectral methods for solving the metric equations, assuming the conformal flatness approximation for the three-metric. The matter equations are solved by high-resolution shock-capturing schemes. We demonstrate that the combination of a finite difference grid and a spectral grid can be successfully accomplished. This "Mariage des Maillages" (French for grid wedding) approach results in high accuracy of the metric solver and allows for fully 3D applications using computationally affordable resources, and ensures long term numerical stability of the evolution. We compare our new approach to two other, finite difference based, methods to solve the metric equations. A variety of tests in 2D and 3D is presented, involving highly perturbed neutron star spacetimes and (axisymmetric) stellar core collapse, demonstrating the ability to handle spacetimes with and without symmetries in strong gravity. These tests are also employed to assess gravitational waveform extraction, which is based on the quadrupole formula.

10.1103/physrevd.71.064023http://arxiv.org/abs/astro-ph/0407174