6533b824fe1ef96bd1280a64
RESEARCH PRODUCT
BIO Bragg gratings on microfibers for label-free biosensing
Miquel Avella-oliverÁNgel MaquieiraEstrella FernándezDaniel PastorMartina Delgado-pinarMiguel V. AndrésAugusto Juste-dolzsubject
Label free biosensingbusiness.product_categoryMaterials scienceBiomedical EngineeringBiophysicsdiffractionNanotechnology02 engineering and technologyBiosensing TechniquesNon-specific bindingbiosensor01 natural sciencesSignalMultiplexinglabel free:FÍSICA [UNESCO]QUIMICA ANALITICATEORIA DE LA SEÑAL Y COMUNICACIONESMicrofiberElectrochemistryHumansNanotechnologyoptical microfiberimmunoassayImmunoassayQUIMICA INORGANICA010401 analytical chemistrynon-specific bindingUNESCO::FÍSICAGeneral Medicine021001 nanoscience & nanotechnology0104 chemical sciencesReflection spectrumMicrocontact printingNanoscale PhenomenaLabel-free0210 nano-technologybusinessDiffractionOptical microfiberBiosensorBiosensorBiotechnologydescription
[EN] Discovering nanoscale phenomena to sense biorecognition events introduces new perspectives to exploit nano science and nanotechnology for bioanalytical purposes. Here we present Bio Bragg Gratings (BBGs), a novel biosensing approach that consists of diffractive structures of protein bioreceptors patterned on the surface of optical waveguides, and tailored to transduce the magnitude of biorecognition assays into the intensity of single peaks in the reflection spectrum. This work addresses the design, fabrication, and optimization of this system by both theoretical and experimental studies to explore the fundamental physicochemical parameters involved. Functional biomolecular gratings are fabricated by microcontact printing on the surface of tapered optical microfibers, and their structural features were characterized. The transduction principle is experimentally demonstrated, and its quantitative bioanalytical prospects are assessed in a representative immunoassay, based on patterned protein probes and selective IgG targets, in label-free conditions. This biosensing system involves appealing perspectives to avoid unwanted signal contributions from non-specific binding, herein investigated in human serum samples. The work also proves how the optical response of the system can be easily tuned, and it provides insights into the relevance of this feature to conceive multiplexed BBG systems capable to perform multiple label-free biorecognition assays in a single device.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 |