6533b824fe1ef96bd1280a85

RESEARCH PRODUCT

Atlas for the properties of elemental 2D metals

Janne NevalaitaPekka Koskinen

subject

Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciences

description

Common two-dimensional (2D) materials have a layered 3D structure with covalently bonded, atomically thin layers held together by weak van der Waals forces. However, in a recent transmission electron microscopy experiment, atomically thin 2D patches of iron were discovered inside a graphene nanopore. Motivated by this discovery, we perform a systematic density-functional study on atomically thin elemental 2D metal films, using 45 metals in three lattice structures. Cohesive energies, equilibrium distances, and bulk moduli in 2D are found to be linearly correlated to the corresponding 3D bulk properties, enabling the quick estimation of these values for a given 2D metal and lattice structure. In-plane elastic constants show that most 2D metals are stable in hexagonal and honeycomb, but unstable in square 2D structures. Many 2D metals are surprisingly stable against bending.

10.1103/physrevb.97.035411http://arxiv.org/abs/1802.01839