6533b824fe1ef96bd1280bc3

RESEARCH PRODUCT

Tracking the Preferences of Users Using Weak Estimators

B. John OommenOle-christopher GranmoAnis Yazidi

subject

VDP::Mathematics and natural science: 400::Mathematics: 410::Applied mathematics: 413Service (systems architecture)Social networkbusiness.industryComputer scienceEstimatorRecommender systemTracking (particle physics)Machine learningcomputer.software_genreTarget distributionVDP::Mathematics and natural science: 400::Information and communication science: 420::Knowledge based systems: 425Targeted advertisingRange (statistics)Artificial intelligencebusinesscomputer

description

Published version of am article from the book:AI 2011: Advances in Artificial Intelligence. Also available from the publisher on SpringerLink:http://dx.doi.org/10.1007/978-3-642-25832-9_81 Since a social network, by definition, is so diverse, the problem of estimating the preferences of its users is becoming increasingly essential for personalized applications which range from service recommender systems to the targeted advertising of services. However, unlike traditional estimation problems where the underlying target distribution is stationary, estimating a user’s interests, typically, involves non-stationary distributions. The consequent time varying nature of the distribution to be tracked imposes stringent constraints on the “ unlearning ” capabilities of the estimator used. Therefore, resorting to strong estimators that converge with probability 1 is inefficient since they rely on the assumption that the distribution of the user’s preferences is stationary. In this vein, we propose to use a family of stochastic-learning based Weak estimators for learning and tracking user’s time varying interests. Experimental results demonstrate that our proposed paradigm outperforms some of the traditional legacy approaches that represent the state-of-the-art.

https://doi.org/10.1007/978-3-642-25832-9_81