6533b824fe1ef96bd1280c15

RESEARCH PRODUCT

Fractional mechanical model for the dynamics of non-local continuum

M. Di PaolaMassimiliano ZingalesGiulio Cottone

subject

PhysicsContinuum (measurement)Mathematical analysisStiffnessNatural frequencyKinematicsNon-local elasticity Fractional calculus modes of vibration and dynamics of non-local baricarNon localFractional calculusLinear continuummedicineBoundary value problemmedicine.symptomSettore ICAR/08 - Scienza Delle Costruzioni

description

In this chapter, fractional calculus has been used to account for long-range interactions between material particles. Cohesive forces have been assumed decaying with inverse power law of the absolute distance that yields, as limiting case, an ordinary, fractional differential equation. It is shown that the proposed mathematical formulation is related to a discrete, point-spring model that includes non-local interactions by non-adjacent particles with linear springs with distance-decaying stiffness. Boundary conditions associated to the model coalesce with the well-known kinematic and static constraints and they do not run into divergent behavior. Dynamic analysis has been conducted and both model shapes and natural frequency of the non-local systems are then studied.

https://doi.org/10.1007/978-0-387-76483-2_33