6533b824fe1ef96bd1280c9d

RESEARCH PRODUCT

Optimal Extensions of Conformal Mappings from the Unit Disk to Cardioid-Type Domains

Haiqing Xu

subject

Mathematics::Dynamical SystemsDegree (graph theory)Mathematics - Complex Variables010102 general mathematicsInverseConformal mapType (model theory)01 natural sciencesUnit diskCombinatoricsDistortion (mathematics)inner cuspDifferential geometryCardioid0103 physical sciencesFOS: Mathematicshomeomorphisms of finite distortionanalyyttinen geometria010307 mathematical physicsGeometry and TopologyComplex Variables (math.CV)0101 mathematicsextensionsMathematics

description

AbstractThe conformal mapping $$f(z)=(z+1)^2 $$ f ( z ) = ( z + 1 ) 2 from $${\mathbb {D}}$$ D onto the standard cardioid has a homeomorphic extension of finite distortion to entire $${\mathbb {R}}^2 .$$ R 2 . We study the optimal regularity of such extensions, in terms of the integrability degree of the distortion and of the derivatives, and these for the inverse. We generalize all outcomes to the case of conformal mappings from $${\mathbb {D}}$$ D onto cardioid-type domains.

https://doi.org/10.1007/s12220-019-00340-x