6533b824fe1ef96bd1280cce
RESEARCH PRODUCT
Asymptotic Behavior of Higher-Order Quasilinear Neutral Differential Equations
Tongxing LiYuriy V. Rogovchenkosubject
Class (set theory)Article SubjectDifferential equationlcsh:MathematicsApplied MathematicsMathematical analysisDelay differential equationlcsh:QA1-939VDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411Stochastic partial differential equationExamples of differential equationsOrder (group theory)Neutral differential equationsAnalysisMathematicsdescription
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/395368 Open Access We study asymptotic behavior of solutions to a class of higher-order quasilinear neutral differential equations under the assumptions that allow applications to even- and odd-order differential equations with delayed and advanced arguments, as well as to functional differential equations with more complex arguments that may, for instance, alternate indefinitely between delayed and advanced types. New theorems extend a number of results reported in the literature. Illustrative examples are presented.
year | journal | country | edition | language |
---|---|---|---|---|
2014-01-01 |