6533b824fe1ef96bd12812b8
RESEARCH PRODUCT
Mesoporous aluminum phosphite
Julio LatorreJamal El HaskouriPedro AmorósMónica Pérez-caberoDaniel BeltránCarmen GuillemAurelio Beltránsubject
Aqueous solutionInorganic chemistryOxideCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsInorganic ChemistryTemplate reactionMesoporous organosilicachemistry.chemical_compoundAtranechemistryMaterials ChemistryCeramics and CompositesPhysical and Theoretical ChemistryPhosphorous acidMesoporous materialPhosphoric aciddescription
Abstract High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S+I− surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption–desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed.
year | journal | country | edition | language |
---|---|---|---|---|
2009-08-01 | Journal of Solid State Chemistry |