6533b824fe1ef96bd128147b
RESEARCH PRODUCT
Hadamard-type theorems for hypersurfaces in hyperbolic spaces
Gil SolanesTakashi KuroseLuis J. Alíassubject
Pure mathematicsGauss mapMathematics::Dynamical SystemsMathematics::Complex VariablesHyperbolic spaceSecond fundamental formMathematical analysisCauchy–Hadamard theoremGauss–Kronecker curvatureSecond fundamental formHypersurfaceMathematics::Algebraic GeometryComputational Theory and MathematicsBounded functionHadamard theoremTotal curvatureDiffeomorphismGeometry and TopologyMathematics::Differential GeometryAnalysisConvex hypersurfaceMathematicsdescription
Abstract We prove that a bounded, complete hypersurface in hyperbolic space with normal curvatures greater than −1 is diffeomorphic to a sphere. The completeness condition is relaxed when the normal curvatures are bounded away from −1. The diffeomorphism is constructed via the Gauss map of some parallel hypersurface. We also give bounds for the total curvature of this parallel hypersurface.
year | journal | country | edition | language |
---|---|---|---|---|
2006-09-01 | Differential Geometry and its Applications |