6533b824fe1ef96bd12814a7
RESEARCH PRODUCT
Causal inference in geosciences with kernel sensitivity maps
Gustau Camps-vallsAdrian Perez-suaysubject
Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine Learning010504 meteorology & atmospheric sciences0211 other engineering and technologiesInverseEstimator02 engineering and technologycomputer.software_genre01 natural sciencesMachine Learning (cs.LG)Methodology (stat.ME)Kernel (statistics)Causal inferenceFOS: Electrical engineering electronic engineering information engineeringRelevance (information retrieval)Data miningSensitivity (control systems)Electrical Engineering and Systems Science - Signal ProcessingFocus (optics)computerRandom variableStatistics - Methodology021101 geological & geomatics engineering0105 earth and related environmental sciencesdescription
Establishing causal relations between random variables from observational data is perhaps the most important challenge in today's Science. In remote sensing and geosciences this is of special relevance to better understand the Earth's system and the complex and elusive interactions between processes. In this paper we explore a framework to derive cause-effect relations from pairs of variables via regression and dependence estimation. We propose to focus on the sensitivity (curvature) of the dependence estimator to account for the asymmetry of the forward and inverse densities of approximation residuals. Results in a large collection of 28 geoscience causal inference problems demonstrate the good capabilities of the method.
year | journal | country | edition | language |
---|---|---|---|---|
2020-12-07 |