6533b824fe1ef96bd1281580

RESEARCH PRODUCT

Malliavin Calculus and Skorohod Integration for Quantum Stochastic Processes

Rémi LéandreRené SchottUwe Franz

subject

Statistics and ProbabilityPure mathematics[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Integrable systemComplexificationSpace (mathematics)Malliavin calculus01 natural sciences81S25Fock space81S25; 60H07; 60G15010104 statistics & probabilitysymbols.namesakeOperator (computer programming)60H07FOS: Mathematics0101 mathematicsMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsProbability (math.PR)Hilbert spaceStatistical and Nonlinear Physics[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Bounded function60G15symbols[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - Probability

description

A derivation operator and a divergence operator are defined on the algebra of bounded operators on the symmetric Fock space over the complexification of a real Hilbert space $\eufrak{h}$ and it is shown that they satisfy similar properties as the derivation and divergence operator on the Wiener space over $\eufrak{h}$. The derivation operator is then used to give sufficient conditions for the existence of smooth Wigner densities for pairs of operators satisfying the canonical commutation relations. For $\eufrak{h}=L^2(\mathbb{R}_+)$, the divergence operator is shown to coincide with the Hudson-Parthasarathy quantum stochastic integral for adapted integrable processes and with the non-causal quantum stochastic integrals defined by Lindsay and Belavkin for integrable processes.

10.1142/s0219025701000371http://arxiv.org/abs/math/0004088