6533b824fe1ef96bd128167e
RESEARCH PRODUCT
In Situ Polyphosphate Nanoparticle Formation in Hybrid Poly(vinyl alcohol)/Karaya Gum Hydrogels: A Porous Scaffold Inducing Infiltration of Mesenchymal Stem Cells
Emad TolbaMaximilian AckermannRafael Muñoz-espíHeinz C. SchröderMeik NeufurthXiaohong WangWerner E. G. Müllersubject
Vinyl alcoholGeneral Chemical EngineeringGeneral Physics and AstronomyMedicine (miscellaneous)Nanoparticle02 engineering and technologykaraya gum010402 general chemistry01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)chemistry.chemical_compoundhuman mesenchymal stem cellsotorhinolaryngologic diseasesKaraya GumGeneral Materials Sciencechemistry.chemical_classificationcoacervateCoacervateintegumentary systemFull PaperChemistryPolyphosphateMesenchymal stem cellGeneral EngineeringPolymerFull Papers021001 nanoscience & nanotechnologydigestive system diseases0104 chemical sciencesChemical engineeringSelf-healing hydrogelsnanoparticles0210 nano-technologyinorganic polyphosphatedescription
Abstract The preparation and characterization of a porous hybrid cryogel based on the two organic polymers, poly(vinyl alcohol) (PVA) and karaya gum (KG), into which polyphosphate (polyP) nanoparticles have been incorporated, are described. The PVA/KG cryogel is prepared by intermolecular cross‐linking of PVA via freeze‐thawing and Ca2+‐mediated ionic gelation of KG to form stable salt bridges. The incorporation of polyP as amorphous nanoparticles with Ca2+ ions (Ca‐polyP‐NP) is achieved using an in situ approach. The polyP constituent does not significantly affect the viscoelastic properties of the PVA/KG cryogel that are comparable to natural soft tissue. The exposure of the Ca‐polyP‐NP within the cryogel to medium/serum allows the formation of a biologically active polyP coacervate/protein matrix that stimulates the growth of human mesenchymal stem cells in vitro and provides the cells a suitable matrix for infiltration superior to the polyP‐free cryogel. In vivo biocompatibility studies in rats reveal that already two to four weeks after implantation into muscle, the implant regions containing the polyP‐KG/PVA material become replaced by initial granulation tissue, whereas the controls are free of any cells. It is proposed that the polyP‐KG/PVA cryogel has the potential to become a promising implant material for soft tissue engineering/repair.
year | journal | country | edition | language |
---|---|---|---|---|
2018-11-01 | Advanced Science |