6533b825fe1ef96bd1281e7d
RESEARCH PRODUCT
Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers
Atle AalerudJoacim DybedalGeir Hovlandsubject
Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technologylcsh:Chemical technologytime-of-flightBiochemistryArticleVDP::Food science and technology: 600Analytical Chemistrylaw.inventionIndustrial robotlawRegion of interestRobustness (computer science)automatic calibration0202 electrical engineering electronic engineering information engineeringCalibrationVDP::Næringsmiddelteknologi: 600lcsh:TP1-1185Computer visionElectrical and Electronic EngineeringInstrumentationbusiness.industryambiguity problemIterative closest point3D sensors020207 software engineeringretroreflective markersAtomic and Molecular Physics and OpticsTime of flightTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESRGB color model020201 artificial intelligence & image processingArtificial intelligencebusinessFiducial markerWireless sensor networkdescription
This paper describes a non-invasive, automatic, and robust method for calibrating a scalable RGB-D sensor network based on retroreflective ArUco markers and the iterative closest point (ICP) scheme. We demonstrate the system by calibrating a sensor network comprised of six sensor nodes positioned in a relatively large industrial robot cell with an approximate size of 10 m × 10 m × 4 m . Here, the automatic calibration achieved an average Euclidean error of 3 c m at distances up to 9.45 m . To achieve robustness, we apply several innovative techniques: Firstly, we mitigate the ambiguity problem that occurs when detecting a marker at long range or low resolution by comparing the camera projection with depth data. Secondly, we use retroreflective fiducial markers in the RGB-D calibration for improved accuracy and detectability. Finally, the repeating ICP refinement uses an exact region of interest such that we employ the precise depth measurements of the retroreflective surfaces only. The complete calibration software and a recorded dataset are publically available and open source.
year | journal | country | edition | language |
---|---|---|---|---|
2019-03-01 | Sensors |