6533b825fe1ef96bd1281e86
RESEARCH PRODUCT
Mechanism of the OH Radical Addition to Adenine from Quantum-Chemistry Determinations of Reaction Paths and Spectroscopic Tracking of the Intermediates.
Antonio Francés-monerrisDaniel Roca-sanjuánManuela Merchánsubject
0301 basic medicineChemistryHydroxyl RadicalAdenineOrganic Chemistry010402 general chemistry01 natural sciencesQuantum chemistry0104 chemical sciencesNucleobaseAdduct03 medical and health sciences030104 developmental biologyPyrimidinesMechanism (philosophy)Computational chemistryExcited stateOrganic chemistryNucleic Acid ConformationQuantum TheoryDensity functional theoryReactivity (chemistry)description
The OH radical is a well-known mediator in the oxidation of biological structures like DNA. Over the past decades, the precise events taking place after reaction of DNA nucleobases with OH radical have been widely investigated by the scientific community. Thirty years after the proposal of the main routes for the reaction of •OH with adenine (Vieira, A.; Steenken, S. J. Am. Chem. Soc. 1990, 112, 6986−6994), the present work demonstrates that the OH radical addition to C4 position is a minor pathway. Instead, the dehydration process is mediated by the A5OH adduct. Conclusions are based on density functional theory calculations for the ground-state reactivity and highly accurate multiconfigurational computations for the excited states of the radical intermediates. The methodology has been also used to study the mechanism giving rise to the mutagens 8-oxoA and FAPyA. Taking into account the agreement between the experimental data and the theoretical results, it is concluded that addition to the C5 and C8 pos...
year | journal | country | edition | language |
---|---|---|---|---|
2016-12-27 | The Journal of organic chemistry |