6533b825fe1ef96bd1281f53

RESEARCH PRODUCT

Discrete KP Equation and Momentum Mapping of Toda System

Vincenzo Sciacca

subject

Laurent seriesDiscrete Poisson equationMathematical analysisStatistical and Nonlinear PhysicsKadomtsev–Petviashvili equationPoisson distributionKP equations discrete Lax operator Toda system Gelfand-Zakhharevich theoryCasimir effectsymbols.namesakesymbolsSettore MAT/07 - Fisica MatematicaMathematical PhysicsPencil (mathematics)Mathematics

description

Abstract A new approach to discrete KP equation is considered, starting from the Gelfand-Zakhharevich theory for the research of Casimir function for Toda Poisson pencil. The link between the usual approach through the use of discrete Lax operators, is emphasized. We show that these two different formulations of the discrete KP equation are equivalent and they are different representations of the same equations. The relation between the two approaches to the KP equation is obtained by a change of frame in the space of upper truncated Laurent series and translated into the space of shift operators.

10.2991/jnmp.2003.10.s2.17http://hdl.handle.net/10447/107223