6533b825fe1ef96bd1281f7e
RESEARCH PRODUCT
Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds
Sara MartorellMaría Sancho-telloCarmen CardaJosé Luis Gómez RibellesLara MilianM.a. Gámiz-gonzálezManuel Mata-roigsubject
0301 basic medicineShort CommunicationsBiomedical EngineeringMedicine (miscellaneous)Human plateletCartilage tissue engineeringBiomaterialsChitosanlcsh:Biochemistry03 medical and health scienceschemistry.chemical_compoundTissue engineeringActivated platelet-rich plasmamedicinelcsh:QD415-436Cartilage repairPorosityCartilageRegeneration (biology)Stabilized porous chitosantechnology industry and agricultureAnatomyChondrogenesisequipment and supplies030104 developmental biologymedicine.anatomical_structurechemistryMAQUINAS Y MOTORES TERMICOSTERMODINAMICA APLICADA (UPV)Biomedical engineeringdescription
[EN] The clinical management of large-size cartilage lesions is difficult due to the limited regenerative ability of the cartilage. Different biomaterials have been used to develop tissue engineering substitutes for cartilage repair, including chitosan alone or in combination with growth factors to improve its chondrogenic properties. The main objective of this investigation was to evaluate the benefits of combining activated platelet-rich plasma with a stabilized porous chitosan scaffold for cartilage regeneration. To achieve this purpose, stabilized porous chitosan scaffolds were prepared using freeze gelation and combined with activated platelet-rich plasma. Human primary articular chondrocytes were isolated and cultured in stabilized porous chitosan scaffolds with and without combination to activated platelet-rich plasma. Scanning electron microscopy was used for the morphological characterization of the resulting scaffolds. Cell counts were performed in hematoxylin and eosin-stained sections, and type I and II collagen expression was evaluated using immunohistochemistry. Significant increase in cell number in activated platelet-rich plasma/stabilized porous chitosan was found compared with stabilized porous chitosan scaffolds. Chondrocytes grown on stabilized porous chitosan expressed high levels of type I collagen but type II was not detectable, whereas cells grown on activated platelet rich plasma/stabilized porous chitosan scaffolds expressed high levels of type II collagen and type I was almost undetectable. In summary, activated platelet-rich plasma increases nesting and induces the differentiation of chondrocytes cultured on stabilized porous chitosan scaffolds.
year | journal | country | edition | language |
---|---|---|---|---|
2017-03-01 |