0000000000076486
AUTHOR
José Luis Gómez Ribelles
Biostable Scaffolds of Polyacrylate Polymers Implanted in the Articular Cartilage Induce Hyaline-Like Cartilage Regeneration in Rabbits
[EN] Purpose: To study the influence of scaffold properties on the organization of ¿in vivo¿ cartilage regeneration. Our hypothesis is that stress transmission to the cells seeded inside the scaffold pores or surrounding it, which is highly dependent on the scaffold properties, determine differentiation of both mesenchymal cells and dedifferentiated autologous chondrocytes. Methods: Four series of porous scaffolds made of different polyacrylate polymers, previously seeded with cultured rabbit chondrocytes or without cells preseeded, were implanted in cartilage defects in rabbits. Subchondral bone was always injured during the surgery in order to allow blood to reach the implantation site an…
Determination of the apparent activation energy of dielectric relaxation phenomena by means of the representation of ε” as a function of T at constant frequency
Abstract The main purpose of this work is to justify the use of the positions of the maxima of e” versus T curves when calculating the apparent activation energy in secondary dielectric relaxations or in the relaxation associated with the glass transition. To exemplify this, phenomenological models as well as experimental results for methacrylic polymers are discussed.
Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations
Purpose: Articular cartilage has limited repair capacity. Two different implant devices for articular cartilage regeneration were tested in vivo in a sheep model to evaluate the effect of subchondral bone anchoring for tissue repair. Methods: The implants were placed with press-fit technique in a cartilage defect after microfracture surgery in the femoral condyle of the knee joint of the sheep and histologic and mechanical evaluation was done 4.5 months later. The first group consisted of a biodegradable polycaprolactone (PCL) scaffold with double porosity. The second test group consisted of a PCL scaffold attached to a poly(L-lactic acid) (PLLA) pin anchored to the subchondral bone. Result…
Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds
[EN] The clinical management of large-size cartilage lesions is difficult due to the limited regenerative ability of the cartilage. Different biomaterials have been used to develop tissue engineering substitutes for cartilage repair, including chitosan alone or in combination with growth factors to improve its chondrogenic properties. The main objective of this investigation was to evaluate the benefits of combining activated platelet-rich plasma with a stabilized porous chitosan scaffold for cartilage regeneration. To achieve this purpose, stabilized porous chitosan scaffolds were prepared using freeze gelation and combined with activated platelet-rich plasma. Human primary articular chond…
A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model
The objective of this study was to test a regenerative medicine strategy for the regeneration of articular cartilage. This approach combines microfracture of the subchondral bone with the implant at the site of the cartilage defect of a supporting biomaterial in the form of microspheres aimed at creating an adequate biomechanical environment for the differentiation of the mesenchymal stem cells that migrate from the bone marrow. The possible inflammatory response to these biomaterials was previously studied by means of the culture of RAW264.7 macrophages. The microspheres were implanted in a 3 mm-diameter defect in the trochlea of the femoral condyle of New Zealand rabbits, covering them wi…
Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers.
A series of polymer and copolymer networks with varying hydrophilicity and distribution of the hydrophilic groups was synthesized and biologically tested with monolayer culture of human chondrocytes in vitro. Cell viability (MTT), proliferation (BrdU incorporation) and aggrecan expression (PG ELISA) were quantified at 7 and 14 days from seeding. Both assays (MTT and BrdU) showed complementary results that are consistent with positive cellular adhesion on the material. When human chondrocytes were cultured on polymer substrates in which the hydrophilic groups were homogeneously distributed, hydrophobic substrates showed higher values in all the biological parameters analysed. Adhesion, proli…
Survival and differentiation of embryonic neural explants on different biomaterials
Biomaterials prepared from polyacrylamide, ethyl acrylate (EA), and hydroxyethyl acrylate (HEA) in various blend ratios, methyl acrylate and chitosan, were tested in vitro as culture substrates and compared for their ability to be colonized by the cells migrating from embryonic brain explants. Neural explants were isolated from proliferative areas of the medial ganglionic eminence and the cortical ventricular zone of embryonic rat brains and cultured in vitro on the different biomaterials. Chitosan, poly(methyl acrylate), and the 50% wt copolymer of EA and HEA were the most suitable substrates to promote cell attachment and differentiation of the neural cells among those tested. Immunofluor…
Analysis of the Biological Response of Endothelial and Fibroblast Cells Cultured on Synthetic Scaffolds with Various Hydrophilic/Hydrophobic Ratios: Influence of Fibronectin Adsorption and Conformation
In this study we developed polymer scaffolds intended as anchorage rings for cornea prostheses among other applications, and examined their cell compatibility. In particular, a series of interconnected porous polymer scaffolds with pore sizes from 80 to 110 microns were manufactured varying the ratio of hydrophobic to hydrophilic monomeric units along the polymer chains. Further, the effects of fibronectin precoating, a physiological adhesion molecule, were tested. The interactions between the normal human fibroblast cell line MRC-5 and primary human umbilical vein endothelial cells (HUVECs) with the scaffold surfaces were evaluated. Adhesion and growth of the cells was examined by confocal…
Channeled scaffolds implanted in adult rat brain.
Scaffolds with aligned channels based on acrylate copolymers, which had previously demonstrated good com- patibility with neural progenitor cells were studied as coloniz- able structures both in vitro with neural progenitor cells and in vivo, implanted without cells in two different locations, in the cortical plate of adult rat brains and close to the subven- tricular zone. In vitro, neuroprogenitors colonize the scaffold and differentiate into neurons and glia within its channels. When implanted in vivo immunohistochemical analysis by confocal microscopy for neural and endothelial cells markers demonstrated that the scaffolds maintained continuity with the surrounding neural tissue and wer…